La inteligencia artificial (IA) se ha convertido en un término general para referirse a aplicaciones que realizan tareas complejas para las que antes eran necesaria la intervención humana, como la comunicación en línea con los clientes o jugar al ajedrez. El término a menudo se usa indistintamente junto con los nombres de sus subcampos, el aprendizaje automático y el aprendizaje profundo.
Para obtener el valor completo de la IA, muchas empresas están haciendo inversiones significativas en equipos de ciencia de datos. La ciencia de datos combina estadísticas, informática y conocimiento empresarial para extraer valor de distintos orígenes de datos.
Detectar y disuadir intrusiones de seguridad
Resolver problemas tecnológicos de los usuarios
Reducir el trabajo de la gestión de producción
La abundancia del poder de la computación de productos básicos en la nube permite un fácil acceso a un poder de computación asequible y de alto rendimiento. Antes de este desarrollo, los únicos entornos informáticos disponibles para la IA no estaban basados en la nube y tenían un costo prohibitivo.
La IA debe formarse en muchos datos para hacer las predicciones correctas. La facilidad de etiquetado de los datos y la asequibilidad del almacenamiento y el procesamiento de datos estructurados y no estructurados permiten crear y entrenar más algoritmos.
Contenido dCada vez más, las empresas reconocen la ventaja competitiva de aplicar los conocimientos de IA a los objetivos empresariales y lo convierten en una prioridad para toda la empresa. Por ejemplo, las recomendaciones específicas proporcionadas por la IA pueden ayudar a las empresas a tomar mejores decisiones más rápido. Muchas de las características y capacidades de la IA pueden reducir los costos y los riesgos, acelerar el tiempo de comercialización y mucho más.el acordeón